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1. Introduction

Fluidized and spouted beds have many applications in chemical
industries, ranging from polymerization reactors and combustors to
coaters, granulators and dryers. In the past decades, the understand-
ing about these contactors has been increased, mainly via experi-
ments. This helped to find new applications for them, tune and con-
trol their operations, design and scale-up, optimize and troubleshoot
of the process. However, sometimes a deep understanding of inter-
and intra-phase interactions at small length scales requires sophisti-
cated models which can describe the motion of phases with desired
details. Various modeling with different length scales have been de-
veloped and used for describing multiphase flows in fluidized beds
and spouted beds [1]. Among them, the two fluid model (TFM) and
combined computation fluid dynamics/discrete element method
(CFD-DEM) are the most used ones. In the TFM, both phases are con-
sidered as interpenetrating continua. In the CFD-DEM model, which
is the main focus of the present work, the fluid phase is considered as
continuum and the solid phase as discrete particles.

Since the first introduction of CFD-DEM, it has been developing
in three distinct fields: theoretical developments, new applications and
numerical implementation. In the theoretical development field, new
force-displacement and friction laws for mechanical contacts [2-7],
closure laws for various fluid-particle interactions [8—15] and cou-
pling methods [16,17] have been proposed. On the other hand, re-
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searchers have added various sub-models to the core model and cou-
pled it with heat and mass transfer equations to apply it to new appli-
cations, such as fluid-particle flow of cohesive particles [18-21], re-
acting multiphase flows [22-24] and flows with heat transfer [25-27].
However, a CFD-DEM simulation is computationally very intensive
which restricts its use to lab-scale simulations with short durations.
Therefore, the efficient and robust numerical implantation of the
CFD-DEM is crucial for achieving advancements in the field of mul-
tiphase modeling.

The governing equations of CFD-DEM should be implemented
into a numerical code with the following properties: it should be exe-
cuted fast, should be robust and can be used to systems with general/
complex geometry. Using efficient numerical algorithms for various
steps of calculations and parallelization are the two main solutions to
have a fast code. A robust code should handle large number of parti-
cles and support the full range of phase porosities (from packed bed to
dilute phase), the full range of superficial gas velocity (from packed
bed to bubbling, turbulent and fast fluidizations) and polydispersity of
particles. In addition, it should support common shapes of fluidized
beds with rectangular and circular cross-sections or with conical base
(like spotted beds).

The main focus of this article is developing a new solver for sim-
ulating fluid-solid flow in fluidized beds that has the abovementioned
properties. As mentioned before, the main limitation of the CFD-DEM
is the high computational demand which makes parallelization nec-
essary. The calculations related to solving the governing equations
of the fluid phase can be efficiently parallelized using space decom-
position method using the message passing interphase (MPI) on the
distributed-memory basis, while the DEM calculations (due to its
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low granularity) is better to be parallelized using loop-level paral-
lelization on the shared-memory basis. We were aiming to perform
large simulations with reasonable execution time on simple computer
desktops. Today, desktop computers have multi-core processors as
well as a graphical processing unit (GPU). This provides a huge com-
putation resource that makes is possible to perform teraflops calcula-
tions. With this in mind, we used a combination of CPU and GPU to
speed-up the execution of CFD-DEM code. OpenFOAM® (an open
source parallel CFD package parallelized using MPI) was used for
solving the fluid phase equations (it uses CPU resources). Implemen-
tation of the DEM was through the CUDA platform (it uses GPU re-
sources). Moreover, calculation of the coupling parameters was also
parallelized using MPI. The numerical implementation of different
parts of this solver is first given in detail followed by the verification
and validation of the solver results and evaluation of its performance
in a bubbling fluidized bed, a flat bottom spouted bed and a Wurster
fluid bed.

2. Model
2.1. Fluid phase equations

For the fluid phase motion, the volume-averaged Navier-Stokes
equations for linear momentum conservation and continuity equation
for mass conservation are used. In formulation of these equations, all
variables are assumed to be locally averaged over each control volume
of the simulation domain. Size of the control volume is chosen large
enough to allow averaging over quantities and small enough to capture
the main characteristics of the flow. This is mostly chosen at least 3 to
4 times larger than the size of particles. The continuity and momentum
conservation equations are as follows [28]:
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where 7 is time, p,is the density of fluid, 7 is the local velocity vector
fluid, p is the fluid pressure and 7 is the shear stress tensor. & and

—

Ff ~? are the local fluid volume fraction and the local volumetric mo-
mentum transfer between fluid and particles, referred as coupling pa-
rameters for the fluid phase equations. The shear stress tensor has two
contributions as follows:
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where 7Y is the viscous stress tensor obtained from the following
equation for an incompressible fluid with g, as the dynamic viscosity
of the fluid:
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and 7' is the turbulent stress tensor that should be calculated based
on the applied turbulent model in the simulation. In the present imple-
mentation, the k — ¢ turbulent model was used. The turbulent model
used by Zhou et al. [29] was adopted here. The transport equa-

tions for the turbulent kinetic energy and dissipation rate of turbulent
kinetic energy are given by:
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where & and ¢ are the turbulent kinetic energy and dissipation rate
of turbulent kinetic energy, and g, is the turbulent viscosity. Other
constants in this closure turbulent model are
C,=009;Cp=1.0;0,=10;0,=13;C,=144and C,=1.92
[29].

2.2. Discrete element method

In the DEM, individual particles constitute the solid phase. The
motions of particles (linear and angular) are tracked in time by apply-
ing force and torque balance equations, referred to as Newton's and
Euler's second laws of motion, respectively. The most common for-
mulation of the DEM is soft-sphere in which the particles are allowed
to have small (compared to the size of particles) overlaps. The me-
chanical force acting on particles is calculated based on these overlaps
using force-displacement relations. Equations of motion for a spheri-
cal particle are:
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where m;, I,, U;, @; and X; are the mass, the moment of inertia, the lin-

ear and the angular velocities and the center position of particle i, re-
. —p=p . . . . . .

spectively. f i s the particle-particle or the particle-wall interaction

force (here, only the mechanical contact force) and fif P is the force
. . . . —t

exerted on particle from the fluid surrounding the particle. M i and
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M j are the tangential torque and rolling friction torque between par-

ticle pairs or a particle and a wall. For evaluating the contact force,
the nonlinear model proposed by Tsuji et al. [30] for normal direc-
tion and Di-Renzo and Di Maio [7] for tangential direction and for
the rolling friction torque, the model proposed by Zhou et al. [31]
were used. In the above equations, the summation is performed on
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particles which are in the contact list of particle, CL,. This list is con-
structed based on the spatial position of particles in every time step
of the simulation. Determination of the contact lists of particles re-
quires efficient algorithms to minimize/reduce the computational ef-
fort of this step. This will be discussed in the following sections.

2.3. Coupling parameters

In the CFD-DEM modeling, the fluid phase equations are formu-
lated based on the Eulerian approach, which are discretized over a sta-
tionary grid mesh (spatial) and time, while the particle phase equa-
tions are formulated based on the Lagrangian approach, which are dis-
cretized over time. The spatial resolution of the fluid properties/field
variables is as large as the mesh size while the spatial resolution of the
particle variables is the size of particles which is much smaller than the
mesh size. These two spatial resolutions do not coincide and hence in-
terphase coupling in CFD-DEM requires special attention. Interphase
coupling parameters are the fluid volume fraction, the volumetric mo-
mentum exchange and fluid-particle interaction force on particles. The
fluid particle interaction force is calculated as:

r

—Vi; -
tf+ S (11

—f-p _—»d —Vp

fio =1+,

where 77 is the drag force exerted on particle, 7in = —V,Vp is the
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pressure gradient force on particle, 7 v, (v.‘; f) is the force

1
due to change in the shear stress around the particle and 7: includes
other remaining interactions, like lift force. The volumetric interphase
momentum exchange in each fluid cell with the volume of V., is cal-
culated by:
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where £, is the number of particles whose centers are in that fluid cell.
Many correlations have been proposed for calculating the drag force
exerted on particles, form conventional correlation like Ergun-Wen &
Yu [32-34] and Di Felice [15] to new correlations proposed by Hill et
al. [10], Benyahia et al. [8], Beetstra et al. [11] and Cello et al. [13].
Here, the correlation proposed by Beetstra et al. [11] was used:
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where d; is the particle diameter, ¢, =1 —¢,is the solid volume frac-
tion and Re; is the particle Reynolds number:

pfffdi‘ﬁ - 5[”
Re;=—"1 1
u
! (14)

Other remaining forces are neglected in the present simulations.

The fluid volume fraction in each fluid cell is calculated according
to the volume of the particles that occupies the volume of the fluid cell
based on the following equation:
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where £, is the number of particles partially located within the fluid
cell and ¢, € [0, 1] denotes the fraction of the volume of particle i that
resides in the fluid cell.

3. Implementation details

A CFD-DEM code can be broken down into three parts: DEM
solver which solves Egs. (9) and (10), a CFD solver which solves
Egs. (1) and (2) and the coupling solver which calculates the inter-
phase coupling parameters. A schematic of these solvers, calculation
sequence and the data transferred among them are shown in Fig. 1.
Each iteration starts with calculating the coupling parameters such as
fluid volume fraction, volumetric fluid-particle interactions, etc. These
parameters are calculated based on the position and velocity of par-
ticles and field variables (pressure and velocity) of the fluid phase in
the current time step. Thereafter, in the DEM solver, the iteration loop
of DEM starts using the calculated values of 7:f 7 and the governing

equations of the DEM are solved for Az seconds. The results are new
position and velocity of all particles in the next time step. In the CFD

solver, using the calculated values of f;_p and ¢, the governing equa-

tions of the fluid phase are solved for Az;seconds. The results are new
field variables of the fluid phase.

3.1. Implementation of DEM solver

The calculations of DEM part are performed on GPU using
CUDA® platform. This massively parallel architecture allows per-
forming millions of calculations in parallel on the shared-memory ba-
sis. The GPU has its high speed dedicated memory (device memory)
for storing the data to be processed on the device. Data transfer be-
tween the main memory of CPU (host memory) and the device mem-
ory is performed using a gate with a limited speed. Therefore, all the
data of DEM should stay on the device memory to avoid data trans-
fer latencies. In this solver, all calculation steps of the DEM part, ex-
cept saving data to the disk, are performed on GPU. The most com-
putational intensive step of the DEM solver is the contact search be-
tween particle pairs and between particle and wall. The parallel algo-
rithm proposed by Mazhar et al. [35] was used for particle-particle
contact search. The algorithm is grid-based which is composed of nine
steps. In this algorithm, the size of bins is not necessarily equal to or
larger than the particles. The algorithm can be used for mono-sized
and poly-sized systems. The mapping of particle bounds on the parti-
cle grid cell is performed using a parallel radix sort on the array of data
which holds bin numbers and particle numbers. After mapping of par-
ticles, the local search is performed between particle pairs which are
close to each other. Details of this algorithm are presented elsewhere
[35].

Another important entity of the DEM solver is the treatment of
walls. As a requirement for a general solver, it should be able to
simulate containers with arbitrary shape. Triangulation of the wall
surface is a logical choice in this regard [28]. By triangulation, the
whole surface of the wall is decomposed into plane triangular sub-el-
ements. Then, the contact detection between the wall and particles is
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Fig. 1. (a) Schematic of the main solvers of a CFD-DEM code and the iteration loop, (b) different parts of the new solver implemented on CPU and GPU and the data transfer among

them.

performed by testing contacts between these sub-elements and parti-
cles near them. Fast and robust methods for contact detection between
a sphere and triangular sub-element are described elsewhere [36]. In
the present work, we have used the so-called barycentric method for
particle-wall contact detection [36]. For integrating the linear and rota-
tional equations of motion of particles, the third-orther Adams-Bash-
forth integration method was used [37].

3.2. Implementation of CFD solver

To solve continuity and Navier-Stokes equations, OpenFOAM®
which is an open source code was used [38]. OpenFOAM® discretizes
(various schemes from first to higher order) and solves linear par-
tial differential equations (PDEs) using the finite volume method. The
code is parallelized using MPI that uses space decomposition for load
balancing. The MPI is a distributed memory method which is designed
for execution on multiple CPUs.

When dealing with numerical solution of continuity and
Navier-Stokes equations, special attention should be paid to two
points: the nonlinearity of convective term in Eq. (2) and the pres-
sure-velocity coupling [39] (coupling between momentum and conti-
nuity equations). The problem of nonlinearity is solved by lineariza-
tion of the convective term by considering it as a product of known
velocity u* (either guessed or obtained from previous calculations) and
an un-known velocity . In addition, the pressure field is considered
explicit and known, p*. The resultant linearized equation is solved to
obtain the new velocity field. If u* is true, the resultant velocity field
should satisfy the continuity equation. If the continuity equation is not
satisfied, the pressure field should be adjusted in a way to eliminate
the continuity errors. The Poisson's equation (obtained from continuity
equation, see [40] for more details) is solved to obtain the new pres-
sure field.

The linearized momentum equation and Poisson's equation are
solved in sequence. Therefore, an algorithm is required to determine
how these equations are related and in what sequence they should
be solved (coupling). There are various algorithms for coupling
these equations, like SIMPLE [41], PISO [42] and PIMPLE. The
PISO algorithm is developed for unsteady state problems with small

time steps in which the linearized momentum equation is solved once
and the pressure is obtained and corrected multiple times. The Courant
number in the PISO algorithm should be far less than unity (small
time steps for solution) to assure convergence. The SIMPLE algorithm
is designed for steady flows wherein the linearized momentum equa-
tion is solved once, followed by solution of pressure equation once.
To carry the information of the fluid field to the next iteration, relax-
ation is used for pressure and velocity fields. The SIMPLE algorithm
is not very sensitive to the Courant number. The PIMPLE algorithm is
a combination of PISO and SIMPLE. It uses both relaxation and mul-
tiple pressure corrections. It takes the advantages of both algorithms,
i.e., rapid convergence and insensitivity to large Courant numbers.

A new solver based on the PIMPLE algorithm was developed for
this code. Details of this solver and discretization of equations can be
found elsewhere [40]. It should be noted that the PIMPLE algorithm
converges at Courant numbers larger than unity. This is very impor-
tant for having a stable solver for simulating fluid-particle flows. In
some circumstances, the velocity of fluid becomes locally very large
(this mostly happens in multiphase flows) and this leads to large lo-
cal Courant numbers, while it is much smaller than unity in the rest
of the domain. If the solver is capable of converging at large Courant
numbers, the large errors are not propagated between iterations and it
can be safely compensated. Otherwise this large local Courant number
may lead to a divergence.

3.3. Implementation of coupling solver

The coupling part of the algorithm was parallelized using MPI
(developed in C ++) and all calculations were performed on CPU as
shown in Fig. 1b. The coupling part computes the coupling parame-
ters (Ff - JEf and 71f ~P) required by fluid and solid phase equations.

Calculation of these parameters needs position and velocity of parti-
cles, pressure and velocity fields of fluid (in addition to other proper-
ties of these phases). The coupling starts with calling these variables
from DEM and CFD parts. Since the DEM variables are stored on the
GPU memory, the first processor (processor#0) calls the DEM vari-
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ables and distributes particle data to other processors based on the spa-
tial position of particles. In this way, each processor is responsible
for calculating a portion of coupling parameters and the computational
load is distributed among processors. For mapping particles on fluid
cells, available tools in OpenFOAM® were used. OpenFOAM® allows
performing a tree-based search over fluid mesh structure and deter-
mining the cell that a given point (for example, center of a particle)
resides in.

Calculation of the fluid volume fraction was implemented in a way
that was not restricted to the type of fluid grid (structured or unstruc-
tured) and shape of fluid cell. To this end, the sub-element method
[43] was used, in which a spherical particle is divided into N equal
parts, each having its own center. For each particle, if the center of any
of these sub-elements resides in a fluid cell, the whole volume of that
sub-element is assumed to be in that cell. An example of this method
of calculating the volume fraction is illustrated schematically in Fig. 2
(shown in 2D for clarity). Number of sub-elements is five in this ex-
ample. For particle 7, the volume of sub-element #5 is not added to
the total solid volume in the target fluid cell, but is added to the total
solid volume of the adjacent cell. For particle j, volumes of sub-ele-
ments #1 and #4 are added to the total solid volume in the target cell
and volumes of other sub-elements are added to the total solid volume
in the adjacent cells. As mentioned earlier, mapping of these sub-ele-
ments onto fluid cells is done by the tools provided in OpenFOAM®.
Accuracy of this method increases with increasing the number of divi-
sions. This method is not restricted to the shape of fluid cell, contrary
to analytical methods [44] which are developed for specific shape of
the fluid cell.

4. Verification and validation

An important step in the development process of a numerical code
is the verification and validation of the code results. In verifica-
tion phase, the code results are compared to the problems whose ana-
lytical/exact solution exists. This shows the accuracy of the numerical
implementation of the model and shows the probable numerical bugs
of the code. However, the verification does not infer the validity of the
implemented physical model. The validity of the model is tested using
actual experimental data in the operating condition of interest. In this
section, we perform verification and validation studies for the imple-
mented code and model.

Particle j

Particle i

Target Fluid cell

Fig. 2. The sub-element method for calculating the fluid volume fraction.

4.1. Verification

In the verification phase, all components of the code should be
tested. The current numerical code contains three main components:
DEM solver, CFD solver and coupling solver. The CFD solver is
available via OpenFOAM® which has been verified before [45]. Here
we perform some verification tests for the DEM and coupling solvers.

4.1.1. Verification of DEM solver

The first set of verification test on the DEM solver was performed
on free fall of a smooth particle on a flat wall in the normal direction.
This motion consists of three steps: Free fall before contact to the wall,
contact with wall and free motion after contact. For a linear visco-elas-
tic contact force model, the analytic expressions for particle center po-
sition are expressed as [46]:
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where 7, and k, are damping coefficient and spring stiffness of the lin-
ear model in the normal direction. %, and y are the initial height and
vertical position of the particle center and r, is the radius of the par-
ticle. £, and #,, are the moments when the first and the second steps
are finished and v, is the velocity of the particle at the end of the
second step. The free fall of the smooth particle on a flat wall (nor-
mal contact) from the height of 0.1 m was simulated. In these sim-
ulations, the coefficient of normal restitution was set at 0.9, 0.7 and
0.5. The particle radius is 1.5 mm, the particle density is 2500 kg/
m®, the normal sg)ring is k, = 10000 N and the time step for integra-
tion is 7.0 x 10" ° s (time step resolution is 20). The accuracy of the
results only depends on the type of the integration method and the
time step resolution (contact time over integration time step). It was
shown that the accuracy of the third order Adams-Bashforth method
is less than 1% when the time step resolution is greater than 12 [37].
Here, the time step resolution is 20 which guarantees the accuracy of
the numerical integration. The results of the solver were compared
with the analytical solution in Fig. 3a. As it can be seen, the DEM
solver accurately predicts the particle center position during falling,
contact and rebound. The difference between the solver results and ex-
act solution is negligible and cannot be distinguished in this figure.
To better measure this difference, the relative absolute error was cal-
culated and the results are shown in Fig. 3b. The error of the DEM
solver is below 1% in the whole processes, which is acceptable. The
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Fig. 3. (a) Evolution of the center position of a sphere during free fall for DEM solver
and exact solution and (b) the relative absolute error between the exact and the DEM
solver results.

error is zero before the contact since the integrator is of third order and
the orders of the equations of motion for both velocity and position of
particle are below three. Therefore, the integrator gives the exact solu-
tion. However, when particle comes into contact with the wall, some
error is introduced in the results. This error is originated from two
sources. First, the governing equation of motion for particle in contact
with wall is not as simple as that for free falling particle (the analyti-
cal solution in Eq. (17) also confirms this). Therefore, the accuracy of
the integrator is not enough to exactly find the center position of the
particle and a very negligible error is introduced. Second, the nature
of DEM integration is discrete and it is possible that the exact moment
of the contact is not detected by DEM. This issue has been addressed
in [28] in details. It is shown that not detecting the exact moment of
contact introduces additional errors in the results.

The simulation results can also be compared to the hard-sphere col-
lision model in a limiting case (normal collision). In each collision
of the particle with a flat wall, a fraction of kinetic energy is dissi-
pated into internal energy and the maximum rise height in each re-
bound of the particle decreases. The relation between the maximum
height of particle in n™ contact and the initial height of particle is as

follows:

Rinaxn = (ho — rP) efl” + 7p.

(20)

The results of the simulation were compared to Eq. (20) in Fig.
4a. The maximum height of the particle in each contact with wall is
decreased due to the dissipation of kinetic energy and the dissipation
rate increases with the coefficient of restitution. The DEM results fol-
low the analytical solution points with minimal errors. The absolute
relative errors of the DEM results are also shown in Fig. 4b. The er-
rors are less than 2% in all conditions and decrease as the number of
contact increases. As it was mentioned before, the difference between
DEM results and the analytical solution is due to the nonlinearity of
the equation of motion (when particle and wall are in contact) and the
discrete nature of the integration scheme in the solver.

4.1.2. Verification of coupling solver

In the coupling solver, two field variables are calculated: the fluid/
solid volume fraction and interphase momentum exchange term.
These variables couple the equations of motions of both phases. It is
important to verify the numerical implementation of these parts. The
terminal velocity test of a very small sphere in the fluid was examined
for the verification of the interphase momentum exchange calculation.
In an extreme condition, the force balance on a very small sphere in
the vertical direction in a medium is governed by [46]:

0.6 -
{’" e!l’ (a}
0.5 — DEM - (0.9 O Exact-0.9
- ==DEM-0.7 ¢ Exact-0.7
E 0.4 - VN e DEM-0.5  x Exact-05
-9
T 03
= (.2
0.1
%,
1] T
o 1 2 3 4 5 6 7 8 9 10

Absolute relative error (%)

0 1 2 3 4 5 6 7 8 9 10
n'" contact (-)

Fig. 4. (a) The maximum height of the particle center in frequent contacts with the flat
wall in free fall condition obtained for the DEM solver and the exact solution and (b)
the absolute relative error between the DEM solver and the exact solution.
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where v, p, and d, are the vertical velocity, density and diameter of

the particle and u, and p, are the velocity and density of the gas. Cp is
the drag coefficient exerted on particle and is obtained by [47]:
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He (23)

where i, is the viscosity of gas. This equation is valid for Reynolds
numbers up to 1000. Eq. (21) was solved by fourth-order Runge-Kutta
integration method using the initial condition v,(0) =0 and the re-
sults were considered as the exact solution. Simulations were per-
formed for free falling spheres in a free fluid (in a conduit with
the diameter of 0.25 m with free-slip condition on walls) using the
CFD-DEM solver. In these simulations, the particle and gas densi-
ties were 1000 and 1.2 kg/m3, gas velocity and gas viscosity were
1 m/s and 1.8 x 10 ° Pass, respectively. Two particle sizes of 220 and
250 um were chosen. The results of the simulations were compared
with the exact solution and are illustrated in Fig. 5. As it can be seen,
the CFD-DEM solver precisely follows the exact solution. This shows
that the CFD-DEM solver can calculate the interphase momentum ex-
change correctly in this limiting case.

The coupling solver also calculates the solid volume fraction. The
procedure of the calculation of this volume fraction in each fluid cell
was explained in previous section (sub-element method). It is impor-
tant to make sure that the whole volume of the particle is considered in
the calculation of solid volume fraction using the sub-element method.
We formed a packed bed (using the code) with a certain number of
particles with known volumes. Then, the volume fraction of the par-
ticles in each fluid cell was calculated using the coupling solver. If
the solver is correct, the total volume occupied by particles in non-
empty fluid cells should be equal to the sum of volume of particles
that formed the packed bed. The total solid volume in nonempty cells
is obtained by:

0.25
- 0.2 -
@ ye o o <
g —"
£ 015 - o
g Exact CFD-DEM
f 0.1 £ =—dp=0.00025m © dp=0.00025m
2 5
E dp=0.00022m ¢ dp=0.00022m
& 005 - //e""r o © © o C
0 =' T T T
0 0.1 0.2 0.3 04
Time (s)

Fig. 5. Evolution of particle velocity in a free fluid obtained from exact solution and
CFD-DEM solver.

Violia = pr,cechezl
cell (24)

where ¢, ., is the volume fraction of solid in the nonempty cell and
V..u is the volume of the nonempty cell. The total solid volume ob-
tained from the solver was compared to the sum of the volume of all
particles and there was no difference between these two. This shows
that the coupling solver does not miss any sub-elements of a particle

in the calculation of solid volume fraction.
4.2. Validation and performance

The new solver was evaluated in three fluidized beds with different
geometries and operating conditions:

- cylindrical fluidized bed in the bubbling regime.

- flat bottom spouted bed with draft tube and rectangular cross-sec-
tion.

- wurster fluidized bed, which is used in granulation and coting of par-
ticles.

The results of the first and the second simulations were validated
with experimental data. All simulations were performed on a desk-
top computer equipped with an Intel® core™.-i7 processor (with 4
3.6-GHz cores) with 12 GB DDR3 RAM, and an NVIDIA GeForce®™
GTX 660Ti GPU with 2GB DDR5 RAM. The CFD solver was de-
veloped on OpenFOAM® v2.4 and it was compiled and tested on
Ubuntu® 14.04 operating system. The CPU code was compiled by
g ++ v4.8 and GPU code was compiled by the standard CUDA®
7.0.28 compiler.

4.2.1. Bubbling fluidized bed

The time series of pressure fluctuations inside the bubbling flu-
idized bed was chosen for validating the solver. Pressure fluctuations
reflect the dynamics of different flow structures inside the bed at var-
ious length-scales (i.e., micro, meso and macro). Many studies have
shown that pressure fluctuations are a proper indicator of the bed
hydrodynamics [48-51]. The experiment was performed in a bed of
15 cm inner diameter and 2 m height. The whole system was elec-
trically grounded to minimize the electrostatic charge effects. This
bed was filled with 1500 um polypropylene particles to the height of
15 cm [52]. Air at the room temperature (25 °C) and atmospheric pres-
sure and velocity of 1.13 m/s (2.5 U,,) was entered the bed through a
perforated palate distributor with 1 mm holes arranged in a triangular
pitch. A pressure probe (dynamic pressure sensor, type 7261, Kistler,
Switzerland) was placed 10 cm above the distributor level and ab-
solute pressure of the bed was recorded with the frequency of 400 Hz.

A simulation with the same operating conditions of the experiment
was performed. About 870,000 spherical particles were used in this
simulation. Other physical properties and simulation conditions are
listed in Table 1. Based on the mesh size and operating conditions, the
mean and maximum Courant number were 0.14 and 0.53. To compare
the simulation results with the experimental data, the pressure of the
gas phase in the simulation was recorded at 10 cm above the distrib-
utor with the frequency of 500 Hz. The computational resource of 2
cores (4 logical threads) of the CPU and one GPU was used for this
simulation. It took 6 h to complete 1 s of the simulation and it was
continued for 20 s.

Fig. 6 shows fluid volume fraction of the bed and velocity of par-
ticles at different simulation moments. To see inside of the bed, the
whole bed is cut at some parts. Small and large bubbles as well as
bubble bursting are evident in this figure. These are characteristics of
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Table 1
Physical properties and simulation conditions for bubbling fluidized bed.

Parameter Value Parameter Value
Particles Bed
Size (um) 1500 Diameter/height (m) 0.15/2
Density (kg/m3) 900 Young modulus (MPa) 10
Young modulus (MPa) 10 Poisson's ratio (—) 0.23
Poisson's ratio (—) 0.23 Dynamic friction (—) 0.3
Dynamic friction (—) 0.3 Rolling friction (—) 0.05
Rolling friction (—) 0.05 Coefficient of restitution (=) 0.8
Coefficient of restitution 0.9
)
Air Simulation
Density (kg/m®) 12 Time step for fluid (s) 1x10°*
Viscosity (Pa-s) 1.8x107°  Time step for particle (s) 1x10°°
Velocity (m/s) 1.3 No. of particles (—) 870,000
No. of CFD cells () 84,000

Mesh shape (—) Hex
Mean Courant number (—) 0.14
Max. Courant number (—) 0.53
Simulation duration (s) 20

the bubbling regime. The power spectral densities of pressure signals
recorded in experiments and simulation are compared with each other
in Fig. 7. The frequency range of 0-20 Hz is illustrated in this figure,
which corresponds to macro (large bubbles) and meso (small bubbles
and clusters) structures in the bed. Macro structures occur at frequen-
cies between 0 and 5 Hz and meso structures at frequencies from 5
to 20 Hz [49]. It can be seen in this figure that macro structures are
more pronounced than meso structures in both simulation and exper-
iment. A peak is observed at 3.4 Hz for experiment and at 3.9 Hz for
simulation, which are very close to each other. This peak corresponds

to the frequency of passage of large bubbles through the bed. This
shows that the frequency of bubbles predicted by the model is very
close to that of the experiment. Intensities of the spectra are also very
close to each other in the macro structure range. However, the model
underestimates the intensity of meso structures. The underestimation
of meso structures can be attributed to the turbulent model. The nu-
merical studies show that the k-¢ model underestimates the drag force
when the Kolmogorov length scale is much smaller than the particle
size [53,54]. When the ratio of the particle size to the Kolmogorov
length is less than 7, the drag force does not need modifications. How-
ever, for larger ratios this drag force requires some modifications as
described in [53]. We calculated this ratio based on the simulation re-
sults and found that for the majority of the bed (more than 80%) this
ratio is lower than 7. However, for the rest of the bed it is greater than
7, which can be a source of the underestimation of meso structures.
Studying the effect of turbulent model and the corrections to the inter-
phase momentum transfer requires a separate study which is beyond
the scope of this study.

4.2.2. Flat bottom spouted bed

The next simulation was setup based on the experiments performed
by Sutkar et al. [55]. They measured average vertical velocity of par-
ticles in a flat bottom spouted bed with a rectangular cross section.
The height, width and depth of the bed were 100 cm, 14 cm and
2 cm, respectively. Two flat plates with the length of 32 cm were
placed at the middle of the bed and 3 cm above the distributor to
form the draft region (see Fig. 8). The bed was initially filled with
1-mm glass beads up to the height of 14 cm. The air entered through
the distributor plate with the velocity of 0.32 m/s and a central jet

0s 1.5s

]Epsilon.oir
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0,3?2I it
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Fig. 6. Snapshots of the bed simulation in bubbling regime at various moments, the top row shows the particles colored based on their velocity magnitude and the bottom row shows
the gas volume fraction. Some parts of the bed are cut off to make the inside of the bed visible.
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Fig. 7. Power spectral density of pressure signal for the bed in bubbling regime. Pres-
sure signals are measured in an experiment and obtained from a simulation at similar
operating conditions.

with the velocity of 28.2 m/s was injected into the bed through a
1-cm-width hole. The simulation was performed for the same geome-
try and at the same operating conditions. About 460,000 spherical par-
ticles were used in the simulation. Physical properties and other simu-
lation data are listed in Table 2. Physical properties of particles related
to the contact mechanics are obtained from [55]. According to the op-
erating conditions, mean and maximum Courant numbers were 0.53
and 1.59, respectively, in this simulation. The computational resources
were a CPU core (2 logical threads) and a GPU. It took around 6.5 h
to complete one second of this simulation and the simulation was per-
formed for 4 s.

i
{
f
]
£

1 sec 2 sec 3 sec

Sample snapshots of the simulated bed are compared with exper-
imental results in Fig. 8. As can be seen in this figure, particles near
the central jet are accelerated by high gas velocity and rise up in the
draft region. A fountain is formed above the draft region where parti-
cles are decelerated and deviate gradually to the side walls. Downward
continuous flow of particles is formed at two sides of the bed and par-
ticles go back to the bottom of the bed through the annulus region. A
comparison between experiment and simulation snapshots shows that
the model can predict the shape and height of the fountain, high con-
centration of the particles near the side walls and inside the draft re-
gion and the central jet formed bellow the draft region. However, as a
noticeable difference, the particles are not evenly distributed between
two sides of annulus regions in the experiment while they are evenly
distributed in the simulation. As stated by Sutkar et al. [55], this can
be attributed to the uneven distribution of particles near the distribu-
tor plate (due to the packing condition) before gas injection. This had
made the air jet to deviate to the right and lots of particles discharge
from this side at the very first moments of the experiment. However,
this uneven packing was not the case in the simulation and a straight
upward jet was formed form the beginning of gas injection.

For a more precise comparison, the time-averaged vertical veloc-
ity of particles in the experiment and the simulation at 30 and 50 cm
above the distributor are shown in Fig. 9. According to Fig. 9a the
model can well predict the particle velocity in the draft region. How-
ever, slight differences can be observed near the walls. This can be at-
tributed to the size of fluid cells that should be at least 3 times larger
than the size of particles. With large size of fluid cells, the effect of
wall is not very precisely captured and small deviations are observed.
Moreover as can be seen in Fig. 9b, a better agreement between the
model results and experiment was obtained above the draft region
where wall effects are less significant.

2.0 sec
(b)

1.5 sec 3.0 sec

Fig. 8. (a) Snapshots of stable spouting regime in experiment performed by Sutkar et al. [SS] and (b) snapshot of the simulation results of the bed with similar operating conditions.
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Table 2
Physical properties and simulation conditions for flat bottom spouted bed [55,57].

Parameter Value Parameter Value
Particles Bed
Size (um) 1000 dimensions (m®) 1x0.14 x 0.02
Density (kg/m3) 2526 Draft tube length (m) 0.3
Young modulus (MPa) 10 Young modulus (MPa) 10
Poisson's ratio (—) 0.23 Poisson's ratio (—) 0.23
Dynamic friction (—) 0.1 Dynamic friction (—) 0.1
Rolling friction (—) 0.05 Rolling friction (—) 0.05
Coefficient of restitution 0.95 Coefficient of restitution 0.95
) )
Air Simulation
Density (kg/m®) 12 Time step for fluid (s) 2 x 107>
Viscosity (Pa-s) 1.8%107°  Time step for particle (s) 2 x 107°
Velocity (m/s) 0.32 No. of particles (—) 460,000
Jet velocity (m/s) 28.2 No. of CFD cells (-) 67,000
Mesh shape (—) Hex
Mean Courant number 0.53
)
Max Courant number 1.59
)
Simulation duration (s) 4
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Fig. 9. Time-averaged vertical velocity of particles measured at (a) 30 cm and (b)
50 cm above the distributor. Empty circles shows the experimental data [55] and lines
show the simulation results.

4.2.3. Wurster bed

The last set of simulations was performed in a more complex
geometry. Wurster fluid bed is used for coating and granulation of
particles and is composed of two main parts: down bed and up bed.
The down bed is a near cylindrical bed with a draft tube in the mid-
dle. The up bed is composed of an expanding cone followed by a

cylinder. The expanded part causes a reduction in the vertical ve-
locity of particles due to a rapid reduction of gas velocity. Dimen-
sions of the bed were chosen based on Glatt® GPCG 3/5, Wurster 7
equipment. The total volume of the bed was 110 L. and the diame-
ters of the bed in bottom and top sections were 14 and 44 cm, respec-
tively. A draft tube with the length of 30 cm and diameter of 7 cm was
placed 2 cm above the distributor plate. More details of the Wurster
bed are shown in Fig. 10. The bed was filled with 1 kg of 3-mm pel-
lets with the density of 1500 kg/m>. This required about 47,200 parti-
cles in the simulation. Other simulation conditions and physical prop-
erties are listed in Table 3. The physical properties related to con-
tact force are based on the Cellets”™ pellets [56]. Mean and maximum
Courant numbers were 0.26 and 1.02 in this simulation, respectively.

Waurster bed Down bed
0.44 m
4 Ll
A 0.176 m
£
n
~
—
E
wy
=]
(=]
v < >
0.14m
Fig. 10. Dimensions of the Wurster bed.
Table 3
Physical properties and simulation conditions for Wurster fluid bed.
Parameter Value Parameter Value
Particles® Bed
Size (um) 3000 Volume (m?) 0.110
Density (kg/m) 1500 Draft tube length/diameter 0.3/0.07
(m)
Young modulus (MPa) 10 Young modulus (MPa) 10
Poisson's ratio (—) 0.23 Poisson's ratio (—) 0.23
Dynamic friction (—) 0.23 Dynamic friction (—) 0.23
Rolling friction (—) 0.05 Rolling friction (—) 0.05
Coefficient of restitution 0.65 Coefficient of restitution (=)  0.65
)
Air Simulation
Density (kg/m®) 12 Time step for fluid (s) 1x10°*
Viscosity (Pa-s) 1.8x 107> Time step for particle (s) 5%10°°
No. of particles (—) 47,200
No. of CFD cells (—) 42,000
Mesh shape (—) hex
Mean Courant number (—) 0.26
Max Courant number (—) 1.02
Simulation duration (s) 120

* Physical properties of the particles are based on the Cellets® pellets reported in [56].
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The computational resources were a CPU core and a GPU. It took
30 min to complete each second of the simulation and it was contin-
ued for 120 s.

Snapshots of the whole bed and the down bed (cut in half to make
inside visible) are shown in Fig. 11a-c. Particles are colored based on
their velocity magnitude. The gas velocity trough the distributor plate
entering in the draft tube is 11.5 m/s (11U,,)) and in the annulus region
is4.5 m/s (4.2 U,,). This is called the velocity profile #1 hereafter. The
high gas velocity under the draft tube accelerates particles and pro-
duces an upward flow of the particles in it. At the top of the draft tube
(in the expansion zone), the gas velocity decreases and results in the
deceleration of particles and formation of the fountain. Particles then
return back to the bottom of the bed in the annulus region. Since the
velocity of the gas entering the annulus region is higher than the min-
imum fluidization velocity of particles, particles are fluidized at the
bubbling regime in that region. Snapshots of this simulation show the
bubbling regime characteristics in the annulus. In the draft tube, the
slugging conveying occurs. This conveying regime occurs due to for-
mation of bubbles in the space between the distributor plate and draft
tube (shown with circles in the figure). These bubbles act as an obsta-
cle against the continuous flow of particles entering the draft tube and
disrupt the particle flow (Fig. 11c). When there is no bubble in this
space, a continuous flow of particles enters the draft tube as can be
seen in Fig. 11b. In addition, in this condition, most of the gas pass-
ing through the central jet enters the draft tube due to existence of par-
ticles in this space. However, when there is a bubble in this space, a
portion of the gas passing through the central jet leaks into the annulus
region and the gas velocity decreases in the draft tube. The pulsation
in the particle flow entering the draft tube and fluctuations of the gas
velocity in the draft tube result in developing a slugging conveying
regime. Therefore, an unstable fountain whose maximum height fluc-
tuates during the bed operation is formed in the bed (this was observed
by reviewing the animation of this simulation).

To support our statements about the gas leakage into the annulus
region, contours of gas velocity in the bed are studied. Fig. 12a shows
these gas velocity contours on a plane crossing the center of the bed
at time 60.4 s. This corresponds to the snapshot of the bed shown in
Fig. 11b. It can be seen that most of the central jet enters the draft
tube and forms a stable jet. Fig. 12b shows the gas velocity contour
of the bed at time 60.8 s which corresponds to the snapshot of the bed
shown in Fig. 11c. This figure shows that when bubbles exist in the

(a)

velocity Y

23
l 2
1

space between the distributor and the draft tube, the gas leaks into the
annulus region and the gas velocity in the draft tube decreases.

In the next simulation, the gas velocity passing through the distrib-
utor under the draft tube (central jet) was increased to 14 m/s (13.5
U, and the gas velocity under the annulus region was reduced to 1 m/
s (0.95 U,,). This is called velocity profile #2 hereafter. A snapshot
of the whole bed and some snapshots of the down bed (cut in half to
make inside visible) are shown in Fig. 13. Particles are colored based
on their velocity magnitude in this figure. A stable fountain is formed
in the bed that rises up to 0.85 m. As can be seen in Fig. 13b&ec, a
fixed bed is formed in the annulus region and a dispersed conveying
regime is formed in the draft tube. A continuous flow of particles is
formed from annulus to draft tube due to the absence of bubbles in the
annulus.

The portability and scalability of the code is another important as-
pect. The code is portable and it can be executed on every PC that is
equipped with a CUDA-enabled GPU. We tested this code on a num-
ber of PCs ranging from laptop to desktop computers. However, the
scalability of the code is limited by the available memory in GPU.
Since each GPU has its dedicated memory and this memory cannot be
extended, the scale of the problem (number of particles) depends on
the size of this memory. For example, in the PC used in the current
study, the CPU side (host side) had access to 12 GB memory while the
GPU side (device side) had access to 2 GB of memory. This problem
can be mitigated by using multiple GPUs or using newer GPUs with
larger memories.

5. Conclusion

This study concerns the important details of implementation of an
efficient hybrid CFD-DEM solver and its performance in predicting
the hydrodynamics of gas-solid flows in bubbling fluidized beds and
spouted beds. It was tried to develop the new solver in a way that it
supports complex container/wall geometries, supports various shapes
of the mesh, converges at very high local and global fluid veloci-
ties (high Courant numbers) and uses the maximum computational re-
sources available on an ordinary computer to obtain the best execu-
tion performance. Governing equations of fluid phase were solved by
the open source CFD package, OpenFOAM®, executed on multiple
CPU processors using MPI. The solver for DEM equations was im-
plemented in parallel using the CUDA® platform. The entire calcula-
tions were parallelized and executed on a GPU. In addition, computa-

Fig. 11. (a) A Snapshot of the Wurster bed (with velocity profile #1) and snapshot of the particles in the down bed part of the Wurster at times (b) 60.4 s and (c) 60.8 s. Particles are
colored based on their velocity magnitude and the snapshots of the down bed are half-cut to make the inside of the bed visible.
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Fig. 12. Contour of the gas velocity in the Wurster bed with velocity profile #1 at times
(a) 60.4 s and (b) 60.8 s.

tions related to the calculation of coupling parameters were also paral-
lelized using MPI.

The solver was first verified by very simple granular and cou-
pled problems whose analytical solutions exist. Among the three main
components of the solver, CFD solver, DEM solver and coupling
solver, only the latter two were examined. The results showed that
the solver can regenerate the exact solution of the examined granu-
lar and coupled problems with acceptable errors. The solver was then

(a)

Velocity ¥

2.7
P

evaluated in three gas-solid flows with various geometries (from sim-
ple to complex) and different number of particles. The solver was
executed on a desktop computer equipped with a 4-core CPU with
3.6 GHz frequency and a NVIDIA GeForce® 660Ti GPU. For a large
system that contains of 870 k particles, it took about 6 h (with two
CPU cores) to complete each second of simulation while in a smaller
system with 47 k particles, this took only 30 min (with one CPU core).
Results of the new solver were compared with the experimental data.
It was shown that the solver can predict the frequency of bubbles and
the intensity/share of macro structures in the bubbling regime, while
underestimates the intensity/share of meso-structures. The solver can
also predict the hydrodynamics of a spouted bed with draft tube in
terms of shape and maximum height of fountain, particle concentra-
tion profile in different parts and time-averaged upward velocity of
particles. The solver was also used to investigate the particle dynamics
in a Wurster bed. Two velocity profiles were tested. In the first veloc-
ity profile (gas velocity greater than U, in annulus region) an unstable
fountain with the slugging conveying in the draft tube was observed
while in the second velocity profile (gas velocity near the U, in annu-
lus region), a stable fountain with dispersed conveying regime in draft
tube. This was found to be attributed to the formation of the bubbles
in the annulus region.

This solver is under more developments to solve mass and energy
equations for both phases and perform interphase mass and energy
coupling. Moreover, a new parallel solver (on GPU) will be developed
for discrete modeling of a spraying system. This solver then will be
coupled to the existing solver through mass, energy and momentum
couplings.

Fig. 13. (a) A Snapshot of the Wurster bed (with velocity profile #2) and snapshot of the particles in the down bed part of the Wurster at times (b) 60 s and (c) 60.2 s. Particles are
colored based on their velocity magnitude and the snapshots of the down bed are half-cut to make the inside of the bed visible.
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